Direct inhibition of elastase activity by indole-3-carbinol triggers a CD40-TRAF regulatory cascade that disrupts NF-kappaB transcriptional activity in human breast cancer cells.

نویسندگان

  • Ida Aronchik
  • Leonard F Bjeldanes
  • Gary L Firestone
چکیده

Treatment of highly tumorigenic MDA-MB-231 human breast cancer cells with indole-3-carbinol (I3C) directly inhibited the extracellular elastase-dependent cleavage of membrane-associated CD40, a member of the tumor necrosis factor (TNF) receptor superfamily. CD40 signaling has been implicated in regulating cell survival, apoptosis, and proliferation, as well as in sensitizing breast cancer cells to chemotherapy, and is therefore an important potential target of novel breast cancer treatments. The I3C-dependent accumulation of full-length unprocessed CD40 protein caused a shift in CD40 signaling through TNF receptor-associated factors (TRAF), including the TRAF1/TRAF2 positive regulators and TRAF3 negative regulator of NF-kappaB transcription factor activity. Because TRAF1 is a transcriptional target gene of NF-kappaB, I3C disrupted a positive feedback loop involving these critical cell survival components. siRNA ablation of elastase expression mimicked the I3C inhibition of CD40 protein processing and G(1) cell cycle arrest, whereas siRNA knockdown of TRAF3 and the NF-kappaB inhibitor IkappaB prevented the I3C-induced cell cycle arrest. In contrast, siRNA knockdown of PTEN had no effect on the I3C control of NF-kappaB activity, showing the importance of CD40 signaling in regulating this transcription factor. Our study provides the first direct in vitro evidence that I3C directly inhibits the elastase-mediated proteolytic processing of CD40, which alters downstream signaling to disrupt NF-kappaB-induced cell survival and proliferative responses. Furthermore, we have established a new I3C-mediated antiproliferative cascade that has significant therapeutic potential for treatment of human cancers associated with high levels of elastase and its CD40 membrane substrate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indole-3-Carbinol Triggers Aryl Hydrocarbon Receptor-dependent Estrogen Receptor (ER)α Protein Degradation in Breast Cancer Cells Disrupting an ERα-GATA3 Transcriptional Cross-Regulatory Loop

Estrogen receptor (ER)alpha is a critical target of therapeutic strategies to control the proliferation of hormone-dependent breast cancers. Preferred clinical options have significant adverse side effects that can lead to treatment resistance due to the persistence of active estrogen receptors. We have established the cellular mechanism by which indole-3-carbinol (I3C), a promising anticancer ...

متن کامل

Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model.

Several lines of experimental evidence have suggested that chemokine receptor CXCR4, a metastasis-promoting molecule, may play important roles in breast cancer bone metastasis. There is emerging evidence linking CXCR4 to matrix metalloproteinases (MMP) as well as their regulator nuclear factor-kappaB (NF-kappaB), a key transcription factor, which is known to activate metastasis-promoting molecu...

متن کامل

Inactivation of NF-kappaB by 3,3'-diindolylmethane contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells.

Constitutive activation of Akt or nuclear factor-kappaB (NF-kappaB) has been reported to play a role in de novo resistance of cancer cells to chemotherapeutic agents, which is a major cause of treatment failure in cancer chemotherapy. Previous studies have shown that 3,3'-diindolylmethane (DIM), a major in vivo acid-catalyzed condensation product of indole-3-carbinol, is a potent inducer of apo...

متن کامل

The Scaffold Protein TANK/I-TRAF Inhibits NF-κB Activation by Recruiting Polo-like Kinase 1

TANK/I-TRAF is a TRAF-binding protein that negatively regulates NF-kappaB activation. The underlying mechanism of this activity remains unclear. Here we show that TANK directly interacts with PLK1, a conserved cell cycle-regulated kinase. PLK1 inhibits NF-kappaB transcriptional activation induced by TNF-alpha, IL-1beta, or several activators, but not by nuclear transcription factor p65. PLK1 ex...

متن کامل

Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway.

Genistein, an isoflavonoid present in soybeans, exhibits anti-carcinogenic effects. Several studies have shown that genistein inhibits cell proliferation and triggers apoptosis in human breast cancer cells. In this study, we assessed the role of the MEK-ERK cascade in the regulation of genistein-mediated cell apoptosis in MDA-MB-231 cells. The results indicate that genistein, in a concentration...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 70 12  شماره 

صفحات  -

تاریخ انتشار 2010